SENSOR TRANSDUCER

RESISTANCE TEMPERATURE TRANSDUCER

RHTP2 -

Use

By inputting resistance value of a 3-wire thermal resistance based on the JIS, this device insulates and converts the resistance value into a DC signal proportional to temperature.

■ Features

- 1. Constant voltage/current output.
- 2. Withstand voltage between input, output, auxiliary supply and outer case (earth) is AC2, 000V (50/60Hz), complete insulation for 1 minute.
- 3. Impulse withstands voltage 5kV, 1.2/50µs (between electric circuit and earth), and positive/negative polarity 3 times each is guaranteed.
- 4. With output line surge protection. (2, 000A, 8/20µs, positive/negative polarity), can transmit an output directly to a distant place.

■ Connection diagram

Specification

Kind of thermal resistance	Temperature span (specified	Input *		Output (load resistance)		Auxiliary	Common
Kind of thermal resistance I: Pt, 100 Ω at 0°C I: Pt, 50 Ω at 0°C I: other than those above Ni is manufacturable. Cu is not manufacturable.	Temperature span (specified current) ≥50°C (2mA) ≥100°C (2mA)	In $A1: 0-50^{\circ}C$ $A2: 0-60^{\circ}C$ $A3: 0-80^{\circ}C$ $A4: 0-100^{\circ}C$ $A5: 0-120^{\circ}C$ $A6: 0-150^{\circ}C$ $A7: 0-200^{\circ}C$ $A8: 0-300^{\circ}C$ $B1: -10-40^{\circ}C$ $B2: -10-50^{\circ}C$ $B3: -10-60^{\circ}C$ $C1: -20-40^{\circ}C$ $C2: -20-50^{\circ}C$ $C3: -20-60^{\circ}C$ $C4: -20-80^{\circ}C$	C5 : -20-100°C C6 : -20-120°C D1 : -30-50°C D2 : -30-60°C D3 : -30-80°C E1 : -50-50°C E2 : -50-60°C E3 : -50-80°C E4 : -50-100°C E5 : -50-120°C E6 : -50-150°C F1 : -70-30°C F2 : -70-80°C G1 : -100-100°C 00 : other than	$\begin{array}{c} & \text{Outpu}\\ (\text{load resist}\\ \hline \\ \hline \\ \hline \\ 1 \end{array} : \text{DC0-100mV}\\ \hline \\ 2 \end{array} : \text{DC0-1V}\\ \hline \\ 3 \end{array} : \text{DC0-5V}\\ \hline \\ 4 \end{array} : \text{DC0-10V}\\ \hline \\ 5 \end{array} : \text{DC1-5V}\\ \hline \\ A \end{array} : \text{DC0-1mA}\\ \hline \\ B \end{array} : \text{DC0-1mA}\\ \hline \\ C \end{array} : \text{DC0-10mA}\\ \hline \\ D \end{array} : \text{DC0-16mA}\\ \hline \\ E \end{array} : \text{DC1-5mA}\\ \hline \\ F \end{array} : \text{DC1-5mA}\\ \hline \\ F \end{array} : \text{DC4-20mA}\\ \hline \\ \hline \\ 0 \end{array}$	tt tance) $(\geq 200 \Omega)$ $(\geq 1k \Omega)$ $(\geq 1k \Omega)$ $(\geq 1k \Omega)$ $(\leq 600 \Omega)$ $(\leq 3k \Omega)$ $(\leq 750 \Omega)$ mose above	Auxiliary supply Auxiliary Supply AC100V±10%, 50/60Hz AC200V±10%, 50/60Hz AC220V±10%, 50/60Hz C24V±10% C24V±10% C24V±10% C300V±10%	Common specification Tolerance: ±0.5% Response time: ≦1sec./99% Consumption VA: AC power source:3VA DC power source:4W Weight: AC power source:450g DC power source:300g
			those above				

*Operating temperature range of thermal resistance is -200+650°C.

•Open of current output: even if the current output terminal is used in a state of regular open, there is no problem. Also, a voltage of approx. 25V occurs on the output terminal.

RHTP2-1A7A1 (80×50×121mm/450g)

SENSOR TRANSDUCER

•Built-in linearizer

Resistance value of a thermal resistance is not proportional to temperature. It is converted into an output proportional to temperature by a linearizer.

•Built-in burnout

Detects disconnection of a thermal resistance and does scale-out of output to positive (+) side.

Scale-out to negative side is also manufacturable if specified.

•Specified current

Specified current is a current flowing into a thermal resistance. Change of resistance value can be measured by voltage drop caused by the specified current.

Standard specified current is 2mA.

Purchase specifications

•Compensating wire

A compensating wire compensates for the temperature difference between thermocouple terminals and transducer terminals. Because color (material) of compensating wire varies according to thermocouple type, choose a compensating wire compatible with thermocouple. Match positive/negative polarities when connecting.

Thermal	External resistance				
resistance	Input span $\geq 100^{\circ}$ C	50° C \leq Input span < 100° C			
Pt 100Ω	$\leq 10 \Omega$ /line	$\leq 5 \Omega / \text{line}$			
Pt 50Ω	$\leq 5 \Omega / \text{line}$	$\leq 2.5 \Omega$ /line			